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ABSTRACT

This paper introduces the Mean Airflow as Lagrangian Dynamics Approximation (MAFALDA), a new

method designed to extract thermodynamic cycles from numerical simulations of turbulent atmospheric

flows. This approach relies on two key steps. First, mean trajectories are obtained by computing the mean

circulation using height and equivalent potential temperature as coordinates. Second, thermodynamic

properties along these trajectories are approximated by using their conditionally averaged values at the same

height and ue. This yields a complete description of the properties of air parcels that undergo a set of idealized

thermodynamic cycles.

MAFALDA is applied to analyze the behavior of an atmosphere in radiative–convective equilibrium. The

convective overturning is decomposed into 20 thermodynamic cycles, each accounting for 5% of the total

mass transport. The work done by each cycle can be expressed as the difference between the maximum work

that would have been done by an equivalent Carnot cycle and a penalty that arises from the injection and

removal of water at different values of its Gibbs free energy. The analysis indicates that the Gibbs penalty

reduces the work done by all thermodynamic cycles by about 55%. The cycles are also compared with those

obtained for doubling the atmospheric carbon dioxide, which in the model used here leads to an increase in

surface temperature of about 3.4K. It is shown that warming greatly increases both the energy transport and

work done per unit mass of air circulated. As a result, the ratio of the kinetic energy generation to the

convective mass flux increases by about 20% in the simulations.

1. Introduction

The atmospheric circulation is characterized by a com-

plex interplay between dynamics and thermodynamics. As

air parcelsmove around the atmosphere, they go through a

wide variety of transformations, such as expansion, com-

pression, phase transition, radiative cooling, and mixing.

These thermodynamics transformations in return affect air

density and henceforth the evolution of the flow. In par-

ticular, the atmosphere as a whole acts as a heat engine

that produces kinetic energy by transporting energy from a

warm source to a cold sink, and, consequently, thermo-

dynamic processes determine the amount of kinetic energy

available to maintain atmospheric motions.

However, not all heat engines are equivalent: the

mechanical output of a heat engine depends not only on

the amount of energy transported and on temperature

difference between the energy sources and sinks, but

also on the nature of the thermodynamics transforma-

tions involved. In atmospheric science, the concept of

heat engine is too often equated with that of a Carnot

cycle (e.g., Emanuel 1986; Emanuel and Bister 1996;

Bohren and Albrecht 1998; Ambaum 2010). Unfortu-

nately, the Carnot cycle is a poor model for how the

atmosphere generates kinetic energy. The primary rea-

son for this lies in the role played byEarth’s hydrological

cycle. A large fraction of the radiative energy received

by Earth is used to evaporate water vapor at the surface

of the ocean, which is then transported upward and re-

moved through condensation and precipitation.

This active hydrological cycle has a strong impact on

the atmosphere’s ability to generate kinetic energy.

First, falling hydrometeors are associated with micro-

scale Stoke flows that slow their fall and dissipate kinetic

energy (Pauluis et al. 2000). The amount of dissipation
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in falling precipitation is on the same order ofmagnitude

as the dissipation of kinetic energy by the large-scale

circulation (Pauluis and Dias 2013). Second, the upward

transport of latent heat in the atmosphere is not a very

efficient heat engine. Pauluis (2011) shows that the

mechanical work produced by a steam cycle—an ideal-

ized heat engine similar to a Carnot cycle except that the

energy source is due to evaporation—is always less than

the work produced in a Carnot cycle. The difference

between the two cycles can be directly explained by the

fact that water vapor evaporates in unsaturated air

parcels but is removed at saturation and can be quanti-

fied in terms of the Gibbs free energy of the water vapor

when it is added and removed from the atmosphere.

These two effects—precipitation-induced dissipation

and the Gibbs penalty due to the injection of water va-

por at low relative humidity—greatly reduce the amount

of work that can be produced by the atmosphere.

Pauluis and Held (2002a,b) analyze the entropy budget

in simulations of radiative–convective equilibrium and

show that the generation of kinetic energy by resolved

atmospheric motions is one order of magnitude smaller

than themaximumwork that would have been produced

by a Carnot cycle for the same external heating. They

argue that moistening of dry air must occur through

diffusion of water vapor and irreversible phase transi-

tion. These irreversible processes are associated with an

internal entropy production and reduce the overall ef-

ficiency of the atmospheric heat engine. In their nu-

merical simulations, Pauluis and Held (2002a) found

that this irreversible moistening of dry air accounted for

two-thirds of the total entropy production by deep

convection so that the generation of kinetic energy by

moist convection was only a fraction of what would be

predicted if one assumes that the atmosphere behaves

as a Carnot cycle. The overwhelming implication is that

the amount of work generated by atmospheric motion

depends crucially on the behavior of the hydrological

cycle, a result that has been recently confirmed by

Laliberte et al. (2015) in global climate models.

The main purpose of this paper is to develop a sys-

tematic framework to analyze the thermodynamic be-

havior of atmospheric flows. Such flows are highly

turbulent and involve multiple scales of motion and a

wide range of thermodynamic processes. Furthermore,

performing a thorough thermodynamic budget, such as

that of Pauluis and Held (2002a,b) requires detailed

diagnostics on diffusion, dissipation, and microphysics,

which are rarely available as standard model output. To

address these issues, the thermodynamic analysis de-

veloped in Pauluis (2011) will be adapted to study the

thermodynamics behavior of moist convection in high-

resolution numerical simulations. The central challenge

here is to apply the concept of thermodynamic cycle, in

which a single air parcel follows a well-defined set of

thermodynamic transformations, to a turbulent flow in

which each individual air parcel exhibits a distinct tra-

jectory and evolution.

To do so, a new technique, the Mean Airflow as La-

grangian Dynamics Approximation (MAFALDA) is

introduced in section 2. First, the mean parcel trajecto-

ries in height and equivalent potential temperature are

computed using the isentropic analysis method de-

veloped by Pauluis and Mrowiec (2013). Second, the

various properties of air parcels along these trajectories

are obtained from their conditionally averaged values

on isentropic surfaces. In section 3, we analyze the

MAFALDA cycles obtained in an idealized radiative–

convective equilibrium simulation. It is shown that the

hydrological cycle greatly reduces the amount of kinetic

energy that can be generated by atmospheric motions.

Section 4 discusses the fact that deep convection is much

more efficient at generating kinetic energy than shallow

overturning, which is explained by scaling arguments for

the upward energy and water transports. Section 5 in-

vestigates the impacts of a doubling of carbon dioxide

concentration on the thermodynamic behavior of moist

convection. Section 6 discusses the approximations un-

derlying MAFALDA and evaluates the accuracy of the

reconstructed cycles. The conclusions are presented in

the last section.

2. The Mean Airflow as Lagrangian Dynamics
Approximation

This paper analyzes a set of simulations of convection

using the System for Atmospheric Modeling (SAM;

Khairoutdinov and Randall 2003). This widely used

cloud-resolving model combines an anelastic dynamical

core with a variety of physical parameterizations for cloud

microphysics, turbulence, and radiation. The configura-

tion used in our simulations includes a single-moment

microphysics in which the condensed water is split be-

tween cloud water, cloud ice, rain, snow and graupel, a

Smagorinsky closure for turbulent diffusion, and an in-

teractive radiative transfer. Convection is simulated on a

doubly periodic domain with a horizontal resolution of

1 km. The vertical resolution is staggered from 75m near

the surface to 500m in the upper troposphere. For the

lower boundary, we use a 2-m-thick slab ocean of uni-

form temperature. The model is used to simulate radi-

ative convective equilibrium for a 380-ppm concentration

of carbon dioxide. The radiation algorithm assumes a

solar constant of 685Wm22 and a zenith angle of 51.78,
with no annual or diurnal cycle. This configuration yields

the same average incoming solar radiation as that at the
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equator. A uniform energy sink of 100Wm22 is imposed

in the ocean slab, which mimics the energy export out of

the equatorial regions by the global oceanic and atmo-

spheric circulations, albeit its primary purpose here is to

obtain a reasonable equilibrium temperature. Because of

the interactive ocean model, the convergence toward

radiative convective equilibrium is rather slow (hundreds

of days), and the last 60 days of the simulations are used

for the analysis presented in this section. The average

ocean temperature in this reference experiment is

300.5K. With the exception of the interactive slab

ocean, the model is identical to the one used in Pauluis

and Mrowiec (2013).

MAFALDA is a systematic procedure meant to

extract the thermodynamic cycles from the standard

output of a numerical simulations. In effect, it requires a

sequence of three-dimensional snapshots for vertical

velocity w; temperature T; mixing ratio for water vapor

ry, liquid water rl, and ice ri; and as total pressure. It

proceeds in the five following steps:

(i) Compute the isentropic streamfunction in height

and equivalent potential temperature coordinates to

determine the mean parcel trajectories (section 2a).

(ii) Compute the conditional average values of various

state variables as function of z and ue (section 2b).

(iii) Define a set of mean trajectories in z–ue space

based on the streamfunction (section 2c).

(iv) Evaluate the value of various thermodynamic vari-

ables along these trajectories (section 2d).

(v) Analyze the Gibbs relationship along these trajec-

tories (section 3).

A schematic representation of this process is shown in

Fig. 1. The first four steps aim at extracting a set of

thermodynamic cycles that capture the various trans-

formations implicit in the simulations and are discussed

in sections 2a–d. The last step analyzes the behavior of

these cycles through the lens of the Gibbs relationship

and is detailed in section 3. The model here is treated

as a black box in that MAFALDA only requires a

set of three-dimensional outputs of standard model

variables (temperature, water content, and vertical

velocity).

a. Isentropic streamfunction

The methodology introduced by Pauluis andMrowiec

(2013) is used to analyze a convective overturning in

isentropic coordinates (z, uei), with uei the equivalent

potential temperature with respect to ice. At the core of

the isentropic analysis lies the concept of an integral on

an isentropic surface:

hf i(z, u
ei0
)

5
1

TL
x
L

y

ðT
0

ðLy

0

ðLx

0

fd[u
ei0

2 u
ei
(x, y, z, t)]dx dy dt.

(1)

Here, T is the period used for time averaging, Lx and Ly

are the horizontal extent of the domain, respectively,

and d is theDirac function. In practice, the integral in (1)

is computed by sorting the function f on finite uei bins,

which amounts to approximating the Dirac function as a

constant function of value Du21
ei on an interval of width

Duei. The isentropic integral hf i is expressed in units of

f per kelvin.

In this study, isentropes are defined as surfaces of

constant uei, which is given by

FIG. 1. Schematic representation of the MAFALDA procedure.
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Here, ry, rl, ri, and rT 5 ry 1 rl 1 ri are the mixing ratios

for water vapor, liquid water, ice, and total water, re-

spectively; Cpd, Ci, Cl, and Cpy are the specific heat ca-

pacities at constant pressure of dry air, ice, liquid water,

and water vapor, respectively; Rd and Ry are the specific

gas constants for dry air and water vapor, respectively; Ly

and Lf are the latent heat of vaporization and freezing,

respectively; pd is the partial pressure; T is the tempera-

ture;H is the relative humiditywith respect to liquidwater;

p0 5 105 Pa is the reference pressure; and Tf 5 273:15K is

the freezing temperature for water under atmospheric

pressure. From a physical point of view, uei corresponds to

the temperature that an air parcel would have after first

being lifted so that all the water content is in the ice phase,

then being compressed back to the reference pressure p0

without allowing any phase transition (including melting).

It is larger than the equivalent potential temperature over

liquid water (Emanuel 1994) because of the inclusion of

the latent heat of freezing. Its use here is motivated by the

desire to better capture deep convective motions above

the freezing level. For simplicity of notation, the subscript i

will be dropped for the rest of the paper, but it should be

understood that the equivalent potential temperature ue
here refers to its value over ice.

The isentropic distribution of vertical mass flux hrwi is
computed as the isentropic integral of the vertical mass

transport following (1). An isentropic streamfunction in

the z–ue space is then defined as

C(z, u
e0
)5

ðue0
0

hrwi(z, u0e) du0e 5
1

TL
x
L

y

ðT
0

ðLy

0

ðLx

0

rwH[u
e0
2 u

e
(x, y, z, t)]dx dy dt, (3)

with H the Heaviside function. The isentropic stream-

function is equal to the net vertical mass flux at height z

of all air parcels with an equivalent potential tempera-

ture less than ue0. Figure 2a shows the isentropic distri-

bution of vertical mass hrwi, and Fig. 2b shows the

corresponding streamfunction C. The isentropic flow

here is very similar to the one discussed in Pauluis and

Mrowiec (2013). It is characterized by the ascent of

warm moist air at a high value of the equivalent poten-

tial temperature and subsidence of air with lower ue. The

mass transport peaks in the lower troposphere, a sig-

nature of the vigorous mixing associated with shallow

convection. The equivalent potential temperature of

the rising air parcels decreases with height, which in-

dicates entrainment of environmental air into the up-

drafts. Downward motions occur at values of ue that

are very close to the horizontal mean ue(z) (solid black

line in Fig. 2), which confirms that most of the down-

ward mass flux occurs through slow subsidence in the

environment. The interested reader should refer to

Pauluis and Mrowiec (2013) for a more detailed dis-

cussion of the physical interpretation of the isentropic

streamfunction and its use for analyzing convective

overturning.

b. Conditional averaging

Finally, for any variable f, we define its conditional

mean for all air parcels at a given height and equivalent

potential temperature as

~f (z, u
e
)5

hrf i(z, u
e
)

hri(z, u
e
)
. (4)

As indicated by the definition (4), these are functions of

both height z and equivalent potential temperature ue
and are defined as the mass-weighted average of the

quantity f for all air parcels at a given height and

equivalent potential temperature.1 Figure 3 shows the

conditional average of various fields that will be used in

the thermodynamic diagnostics in section 3. Tempera-

ture is shown in Fig. 3a. It decreases systematically with

height and is close to a moist adiabatic profile through

the troposphere. At a fixed height, temperature increases

with equivalent potential temperature. Moist entropy

(Fig. 3b) here is defined as the moist entropy per unit

mass of dry air and is defined in the appendix. The close

relationship between moist entropy and potential tem-

perature is quite apparent, with the entropy increasing

systematically with ue, albeit it is not a one-to-one re-

lationship. The mixing ratio, shown in Fig. 3c, exhibits

1 Note that, for an anelastic model, the density is a function of

height alone r5 r0(z) and can be factored out of the right-hand

side of (4). Nevertheless, the isentropic integral of density hri still
depends on the equivalent potential temperature, with hri5
r0(z)h1i(z, ue), where the isentropic integral h1i(z, ue) is equal to
the fractional area covered by air parcels with equivalent potential

temperature ue at level z.
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also a systematic decrease with height that is consistent

with a Clausius–Clapeyron relationship. At a given height,

the mixing ratio increases with ue as well. The specific

Gibbs free energy for water vapor gy is defined in the ap-

pendix. It can be approximated by gy ’RyT lnH. The

conditional mean distribution ~gy, shown in Fig. 3d, reflects

primarily the variations in relative humidity: gy is close to

0 at low altitude and high ue, which corresponds to cloudy

air. Above the freezing level, cloudy air is saturated with

respect to ice but is unsaturated with respect to liquid

water, corresponding to a negative value for theGibbs free

energy. Finally, unsaturated air is characterized by large

negative values for gy. The buoyancy shown in Fig. 3e is

small for unsaturated air but can reach values as high as

0.1ms22 for saturated air parcels with high ue. The vertical

velocity distribution in Fig. 3f indicates the presence of

strong updraft, with vertical velocity up to 35ms22 in the

upper troposphere for air panels with ue of about 340K.

c. MAFALDA cycles

As discussed in Pauluis and Mrowiec (2013), the isolines

of the isentropic streamfunction correspond to the mean

trajectories in the z–ue space in the sense that the conditional

averaged vertical velocity ~w(z, ue) and diabatic tendencyf_ue (z, ue) are parallel to the isolines of c. In MAFALDA,

we use the isopleths of the streamfunction to represent

‘‘parcel’’ trajectories. In practice,we select a numberN5 20

of trajectories [zk(l), ue,k(l)] with 1# k#N:

C[z
k
(l), u

e,k
(l)]5

2k2 1

2N
min
z,ue

C . (5)

The parameter l is used here as a free parameter along a

given trajectory. Large values of k correspond to a more

negative value of the streamfunction and are typically

associated with shallow overturning, while lower values

of k are associated with deeper overturning. The posi-

tive values of the streamfunction are omitted from this

analysis. These are associated with the overshoot of

convective towers near the tropopause and the breaking

gravity waves in the stratosphere. While present in the

isentropic analysis, these account for a small fraction

(less than 5%) of the total mass transport.

d. Thermodynamic cycles

The various properties of the flow along the stream-

lines are defined as the isentropic average of the prop-

erty at the same value of z and ue. For example, themoist

entropy per unit mass of dry air s along the kth trajectory

is obtained as follows:

s
k
(l)5 ~s[z

k
(l), u

e,k
(l)]. (6)

This approach makes it possible to define a set of tra-

jectories based on the isentropic streamfunction in z–ue
space and by using the conditional average f(�) to de-

termine the thermodynamic properties of the air parcels

along these trajectories.

Figure 4 shows the MAFALDA trajectories from our

simulations in four different coordinates: moist entropy

and temperature (s–T), buoyancy and height (b–z),

water content and height (rT–z), and water content and

Gibbs free energy (rT–gy). The coordinate pairs were

each chosen for their significance for the thermody-

namical behavior of convection, which will be discussed

in section 3. The definitions of the thermodynamic var-

iables can be found in the appendix. The choice of axes

in Fig. 4 is such that all trajectories are counterclockwise.

Three points labeled 1–3 have been added to the figures:

point 1 corresponds to cold dry air near the surface,

FIG. 2. (a) Isentropic distribution of vertical mass flux hrwi (kgm22 s21 K21) in the radiative–convective equilibrium simulations.

(b) Isentropic streamfunction C(z, ue) (kgm
22 s21). The solid line shows the mean profile of equivalent potential temperature ue(z).
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point 2 corresponds to warm moist air near the surface,

and point 3 corresponds to upper-tropospheric condi-

tions. The thermodynamic trajectories can be divided

into three steps: isobaric heating andmoistening (1/ 2),

warm and moist expansion (2/ 3), and cold, dry com-

pression (3/ 1).

The cycles in s–T coordinates shown in Fig. 4 are quite

similar to the isentropic streamfunction in z–ue co-

ordinates. This is not surprising, as temperature can be

thought of as a proxy for height and entropy as one for

the equivalent potential temperature. Surface heating and

moistening (1/ 2) appears as an increase in entropy at

FIG. 3. (a) Conditional averaged temperature ~T, (b) moist entropy ~s, (c) mixing ratio ~ry , (d) specific Gibbs free energy of water vapor ~gy ,

(e) buoyancy ~b, and (f) vertical velocity. The conditional mean here is defined through (4) and corresponds to the mass-weighted average

values for all parcels at a given height z and equivalent potential temperature ue.
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high temperature. It is followed by the expansion (2/ 3)

characterized by a decrease in temperature. This expan-

sion is associatedwith a decrease in entropy resulting from

the diffusive loss of water vapor due to entrainment of dry

air in the updrafts. For the deeper cycles, there is a slight

increase in entropy at temperature below freezing. The

entropy s used here is the moist entropy with respect to

liquid water. As ice here has a negative specific entropy, a

loss of ice corresponds to a gain of entropy. Finally, during

compression (3/ 1), temperature increases. In the first

part of the compression (3/ 3a), entropy decreases be-

cause of the radiative cooling, but in the second portion

(3a/ 1), entropy increases because of the humidity

gained from detrainment. Overall, the thermodynamic

cycles in s–T coordinates exhibit a structure similar to that

of a heat engine, with the parcel’s entropy increasing at

high temperature and decreasing at lower temperature,

but do not correspond to the theoretical Carnot cycle, as

entropy changes do not occur at constant temperature but

rather are spread through the entire atmosphere.

In the buoyancy–height coordinates (b–z in Fig. 4),

the warming and moistening step (1/ 2) appears as a

slight increase in buoyancy. During the ascent (2/ 3),

the buoyancy is at first small, but it increases markedly

above the cloud base (2a in the figure). Buoyancy is

highest for the deeper cycles, as these are associated

with higher values of ue during the ascent. There is

also a noticeable increase in buoyancy near the

freezing level (2b in the figure). During compression

(3/ 1), buoyancy is close to zero or slightly negative

for all cycles, which confirms that compression occurs

primarily through the slow subsidence in the environ-

ment. Above the cloud base, the buoyancy of rising air

parcels is higher than that of the descending air, and

the cycles are associated with a net generation of ki-

netic energy. Near the surface, however, several cycles

are characterized by the ascent of heavier air and

subsidence of lighter air. This indicates the presence

of a convective inhibition near the surface, in which

air parcels must first be mechanically forced before

FIG. 4. MAFALDA trajectories obtained from the isentropic streamfunction in (a) T–s coordinates, (b) b–z coordinates, (c) rT–gy
coordinates, and (d) rT–z coordinates.
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becoming unstable once they reach their level of

neutral buoyancy.

In water content and height coordinates (rT–z in

Fig. 4), the moistening step (1/ 2) shows an increase in

water content due to evaporation at the surface. The

expansion (2/ 3) shows the decrease of water content

due to precipitation and entrainment. The compression

step (3/ 1) shows a continuous increase in humidity

due to detrainment and reevaporation of precipitation

in the free troposphere. For all cycles, the water content

is higher for ascending air than for descending air, cor-

responding to a net upward transport of water.

Figure 4 shows the thermodynamic cycles in the mixing

ratio and Gibbs free energy (rT–gy) coordinates. The spe-

cific Gibbs free energy of water vapor is given here by

g
y
5C

l

 
T2T

f
2 ln

T

T
f

!
1R

y
T lnH .

The Gibbs free energy depends primarily on relative hu-

midity, with the impacts of the temperature being com-

paratively small. Surface warming andmoistening (1/ 2)

appears here as an increase in water content occurring

for 0:012# rT # 0:016 and gy ’240 kJ kg21 K21. The

negative value of the Gibbs free energy confirms that

water is evaporating in unsaturated air. The ascent (2/ 3)

can be subdivided into three substeps. First, between the

surface and the cloud base, (2/ 2a), unsaturated parcels

rise with approximately constant mixing ratio, but their

relative humidity increases, and therefore so does their

Gibbs free energy. Between the cloud base and freezing

level (2a/ 2b), the Gibbs free energy of water vapor is

equal to that of liquid water, which is small because of

the choice of the reference state (see the appendix).

Water gradually condenses and precipitates. Above the

freezing point (2b/ 3), the water content decreases at

negative value of the Gibbs free energy. The negative

Gibbs free energy here arises from the fact that water

vapor is in equilibrium with ice but unsaturated for

liquid water. Subsidence (3/ 1) is characterized by an

increase of water content in unsaturated air (i.e., cor-

responding to negative values of the Gibbs free en-

ergy). Note that the Gibbs free energy of water vapor is

systematically higher when water is removed than

when it is being added. The importance of this will be

discussed in the next section.

3. Thermodynamic analysis of moist convection

The MAFALDA trajectories (zk, ue,k) defined above

are cyclical trajectories, along which one can compute

the value of any thermodynamic variables. These tra-

jectories can thus be viewed as thermodynamic cycles

and analyzed under the framework laid out in Pauluis

(2011). Changes of entropy can be related to changes in

enthalpy, pressure, and air composition by the Gibbs

relationship:

Tds5 dh2a
d
dp2 �

w5y,l,i
g
w
dr

w
. (7)

Here, s is the moist entropy per unit mass of dry air, h is

the total enthalpy per unit mass of dry air, ad is the

specific volume per unit mass of dry air, and gy, gl, and gi
are the Gibbs free energy of water vapor, liquid water,

and ice, respectively. The definitions of the different

thermodynamic variables are provided in the appendix.

Equation (7) is written assuming a fixed mass of dry air,

but water content is allowed to vary freely.

For a cycle, the work per unit mass of dry air is given

by the integral

W52

þ
a
d
dp . (8)

This can be rewritten using the relationship (7) as

W5

þ
T ds1 �

w5y,l,i

þ
g
w
dr

w

5W
max

2Dg . (9)

Here, Wmax is the work that would be done by a Carnot

cycle transporting the same amount of entropy.We refer

to the term Dg as the Gibbs penalty. It accounts for the

thermodynamic consequences of adding and removing

water under different thermodynamic conditions. As

discussed in Pauluis (2011), water is typically added as

unsaturated water vapor at low Gibbs free energy and is

removed as liquid or ice with a comparatively higher

value of the Gibbs free energy. Hence, the Gibbs free

energy increases through the thermodynamic cycle,

which corresponds to a reduction of the mechanical

output [Dg. 0 in (9)]. Note that, in his analysis of the

idealized steam cycle, Pauluis (2011) only considers

changes in water vapor mixing ratio and assumes that,

when present, liquid water is in thermodynamic equi-

librium with water vapor. The expression for the Gibbs

penalty used here includes changes of water in all three

phases and can take into account nonequilibrium phase

transitions, such as the freezing of supercooled water or

evaporation of water vapor in unsaturated air.

In an anelastic model, such as SAM, the pressure term

in the momentum equation is split between a vertical

acceleration due to buoyancy and a nonhydrostatic

pressure term. In such cases, the mechanical work is

related to the buoyancy flux and vertical transport of

water vapor by
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T
Gdz1HOT

’Gdz1 b dz1 r
T
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Here, a5 (11 rT)
21
ad is the specific volume per unit

mass of moist air; G is the gravitational acceleration.

Under the anelastic approximation, a0(z) and r0(z) are

the specific volume and density profiles of the reference

atmosphere. The buoyancy b is defined asG[(a2a0)/a0].

The higher-order term (HOT) in (10) is associatedwith the

cross product rTbdz and is significantly smaller than the

buoyancy terms, as total water vapor content is small

[rT , 0:03 within Earth’s atmosphere]. The first term on

the right-hand side cancels out when integrated over a

cyclical trajectory so that the work in (8) is given by

W5

þ
2a

d
dp’

þ
b dz1

þ
r
T
Gdz5W

b
1W

P
. (11)

The term Wb corresponds to the upward transport of

buoyancy by convective motions and is directly related

to the generation of kinetic energy by the resolved

motions. The second term WP is the work necessary to

lift the water in all its phase and is dissipated as pre-

cipitation falls down [see Pauluis et al. (2000) for further

discussion].

Equations (9) and (11) can be combined into a single

balance for the entropy change:þ
T ds|fflfflffl{zfflfflffl}
Wmax

5

þ
b dz|fflfflffl{zfflfflffl}
Wb

11

þ
r
T
Gdz|fflfflfflfflffl{zfflfflfflfflffl}
Wp

1 �
w5y,l,i

þ
(2g

w
) dr

w|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dg

.

(12)

The units of the various integrals in (12) are in joules per

kilogram. These correspond to a work per unit of mass

of dry air circulating through the cycle. The left-hand

side corresponds to the maximum work that could be

produced by a Carnot cycle. This maximum work can be

decomposed—on the right-hand side—as the sum of the

generation of kinetic energy by the resolved motions

Wb, the increase of the geopotential energy of the con-

densed water Wp, and the Gibbs penalty Dg (i.e.,

the reduction in mechanical work required to balance

the increase of the Gibbs free energy of the water).

Equation (12) thus makes it possible to compare the

mechanical work produced by a thermodynamic cycle to

that of a Carnot cycle and to identify why the gener-

ation of kinetic energy may be less than the theoretical

maximum.

The terms in (12) can be directly computed for the

mean trajectories obtained under MAFALDA:

W
max,k

5

þ
T

k
(l)

ds
k

dl
dl , (13)

where the suffix k refers to the cycle index. Graphically,

the terms Wmax,k, Wb,k, and Dgk are equal to the areas

contained within the kth cycles in Fig. 4. Similarly, Wp,k

is equal to the area within the cycle in Fig. 4 multiplied

by the gravitational acceleration G. Figure 5 shows the de-

composition of (12) for 20 cycles. Figure 5 shows the con-

tribution of the last three terms normalized by the

maximum work.

The maximum work for the deepest cycle Wmax,1 is

about 1570 J kg21. If all this work were produced and

FIG. 5. Decomposition of the mechanical work performed by the

individual MAFALDA trajectories [see (12)]. (a) Maximum work

Wmax (magenta line), kinetic energy production Wb (black line),

increase in water geopotential energy Wp (blue line), and Gibbs

penalty Dg (red line). (b) Normalized contribution of kinetic en-

ergy production Wb/Wmax (black line), increase in water geo-

potential energy Wp/Wmax (blue line), and Gibbs penalty Dg/Wmax

(red line).
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converted into kinetic energy, this would yield a velocity

of approximately 55m s21. However, the actual gener-

ation of kinetic energy is much lower, with Wb,1 ’
500 J kg21. The maximum vertical velocity along cycle 1

is only 13m s21, corresponding to a kinetic energy of

85 J kg21, which indicates that most of the buoyancy

work is transferred to the rest of the fluid through the

nonhydrostatic pressure field. The lifting of water by the

same cycle is associated with an increase of geopotential

energy of about Wp,1 ’ 510 J kg21. This corresponds to

lifting 16:4 g kg21 of water—the maximum amount of

water in cycle 1—by about 3200m. The total mechanical

work in cycle 1 is thus about 1010 J kg21. In contrast, the

Gibbs penalty amounts to about 650 J kg21, which ac-

counts for 42% of the maximum work. This Gibbs pen-

alty corresponds to adding 16:4 g kg21 of water vapor at a

relative humidity of 75% and removing it at saturation.

Cycles 1–5 correspond to deep convection with cloud

tops between 10.5 and 8km, respectively. The maximum

work decreases from 1570 J kg21 for cycle 1 to 540 J kg21

for cycle 5. These large values of Wmax for deep con-

vection can be attributed both to the large difference of

entropy between the expansion and compression por-

tions of the cycle and to the large temperature difference

between the energy source at the surface and its sink in

the upper troposphere, as seen from Fig. 4. The buoy-

ancy flux Wb drops more sharply than Wmax: while the

buoyancy flux accounts for 32% of the maximum work

in cycle 1, its contribution drops to 8% of the maximum

work in cycle 5. Conversely, the relative contribution of

Gibbs penalty Dg increases from cycle 1 to 5, going from

42% of the maximum work in cycle 1 to 62% in the fifth

cycle. The relative contribution associated with the

lifting of water appears to be relatively constant, at

about one-third of the maximum work. Thus, shallower

cycles not only have a smaller maximum work but also

exhibit a comparatively largerGibbs penalty. Both these

factors lead to a significant reduction of the production

of kinetic energy in shallow cycles.

Cycle 6 reaches an intermediate height of about 5.5km,

similar to that of congestus clouds. While the corre-

sponding maximum work is still substantial, with

Wmax,6 ’ 370 J kg21, the corresponding buoyancy flux is

weak, about 14Wm 22. Cycles 7–10 correspond to

shallow overturning, with cloud top between 2 and 4km.

They are associated with very small generation of ki-

netic energy. In fact, the buoyancy fluxes for cycles 8 and

9 are negative, indicating that these cycles are mechan-

ically forced. The Gibbs penalty in these cycles accounts

for the bulk of the maximum work. These cycles still

perform some mechanical work, between 10% and 28%

of the maximum work, but they are almost entirely used

to lift water. Cycles 11–20 never reach saturation: they

correspond to shallow dry convection confined to the

subcloud layer. They are associated with very low values

of Wmax. It should be noted that the horizontal resolu-

tion of the model (1 km) is insufficient to accurately

resolve shallow overturning cells. While cycles 8–20 are

thermodynamically consistent, they correspond to the

behavior of underresolved shallow overturning in a nu-

merical model and may not be representative of the

behavior of shallow convection.

The integral in (12) yields the amount of work gen-

erated per unit mass of air circulated in each cycle. The

total work produced by atmospheric motions can be

obtained by multiplying the work by the mass transport

in each cycle:

�
k51,N

DC
k
W

max,k
5 �

k51,N
DC

k
(W

b,k
1W

p,k
1Dg

k
), (14)

where DCk is the mass transported in cycle k. In

MAFALDA [see (5)], the mass transport is the same

across all cycles, with DCk 52N21 minz,ueCue ’
0:0014 kg s21 m22.

The results of the global analysis are shown in Table 1.

The maximum work is 8:3Wm22. The generation of ki-

netic energy accounts for 1:5Wm22, which amounts to

18% of the total. The lifting of water consumes kinetic

energy at a rate of 2:5Wm22. The Gibbs penalty for the

whole simulation is 4:6Wm22. The total budget is strongly

dominated by the deepest cycles, as these are the ones that

are associated with the largest mechanical output per unit

of air circulated. It confirms that convection in our simu-

lation is greatly affected by moist processes. The Gibbs

penalty and lifting of condensed water greatly reduce the

amount of work that is available to sustain convective

motions, and kinetic energy is generated at a rate that is

one order of magnitude smaller than what would be ex-

pected from an equivalent Carnot cycle.

4. Depth of convection and mechanical efficiency

The behavior of these thermodynamic cycles indicates

that the partitioning of the maximum work between

kinetic energy generation, water lifting, and Gibbs

penalty is significantly affected by the depth of the

overturning. In this discussion, we focus primarily on the

TABLE 1. Decomposition of the maximum work into its three

components in the reference and 23CO2 simulations [see (14)]. All

units are watts per square meter.

Expt Wmax Wb Wp Dg

Reference case 8.3 1.5 2.5 4.6

23CO2 9.9 1.7 3.2 5.3
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partitioning of the maximum work between Gibbs pen-

alty, water loading, and buoyancy flux for deep convec-

tion (e.g., cycles 1–6). In particular, Fig. 5 shows that

(i) the relative contribution of the water lifting re-

mains roughly unchanged;

(ii) the relative contribution of the Gibbs penalty de-

creases for deeper cycles;

(iii) the relative contribution of the buoyancy flux

increases for deeper cycles.

This behavior can be understood in light of the dif-

ferences between the cycles, as shown in Fig. 4. A deeper

cycle corresponds not only to an increase in the tem-

perature difference at which the cycle is operated but

also to an increase in the entropy difference between the

updraft and downdraft. This means that the maximum

work, which is proportional to the product of both, will

increase rapidly. Similarly, the contribution of the lifting

of water increases not only because water is transported

to a deeper level, but also because more water is being

transported. The entropy difference between the up-

drafts and downdrafts is approximately proportional to

the difference in water vapor content: that is,

s
up
2 s

down
’

L
y

T
(r

up
2 r

down
) , (15)

where the subscripts ‘‘up’’ and ‘‘down’’ indicate that the

value of the variable is taken during the ascending and

subsiding portions of the cycle. Similarly, the tempera-

ture difference between the surface and the top is pro-

portional to the height difference

T
top

2T
sfc

’
›T

›z
(z
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2 z

sfc
) . (16)

Here, the subscripts ‘‘sfc’’ and ‘‘top’’ refer to the value of

the variables at the surface and at the top of the cycle.

Hence, the contribution from the water lifting Wp is

proportional to the maximum work:
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The temperature scale height is defined as HT 5
[(›/›z)(lnT)]21 and has a value of about 50 km for a

lapse rate of 6Kkm21, which is typical of the lower tro-

posphere. The scaling (17) indicates that the increase in

geopotential energy of the water accounts for about

20% of the maximum work (i.e., Wp ’ 0:2Wmax). This

corresponds to the lower end of the relative contri-

bution for Wp in Fig. 5. The underlying argument in

(17) ignores the lifting of condensed water. Including

the water loading would increase the ratio Wp/Wmax.

The value of Wp/Wmax ’ 0:3 observed in cycles 1–5

corresponds to a situation where the condensed

water mixing ratio in the updraft is equal to half the

difference in water vapor between updraft and downdraft

[i.e., rcnd,up 5 0:5(rup 2 rdown)].

The Gibbs penalty Dg shows a smaller sensitivity to

the depth of the cycle. This can be again understood

by looking at Fig. 4. While the difference in Gibbs free

energy between the ascending and descending branch

increases for deeper cycle, the total change in humid-

ity remains approximately constant. Once convection

reaches a depth of 5km or more (corresponding ap-

proximately to twice the scale height for saturation water

vapor), most of the water vapor present in the updrafts

condenses during its ascent. Further increasing the depth

of the convection does not substantially increase con-

densation. The difference in Gibbs free energy between

the ascending and subsiding air parcels is primarily de-

termined by the difference in water content:

g
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It follows that the Gibbs penalty can be approxi-

mated by

Dg’ r
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The relative contribution of the Gibbs penalty to the

cycle then can be approximated as follows:
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For deep convection, one can assume that all the

water condenses and ry,sfc ’ 2ry,up. The fraction of the

maximum work that is lost because of the Gibbs penalty

is approximately given by

Dg

W
max

’
33K

(T
sfc

2T
top

)
. (21)

This implies that the relative importance of the Gibbs

penalty is inversely proportional to the depth of the cycle,

measured here in terms of the temperature difference

between the heat source and heat sink. Within Earth’s

atmosphere, the deepest cycle would be associated with a
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temperature difference Tsfc minus Ttop corresponding to

the temperature difference between Earth’s surface

and the tropopause (i.e.,Tsfc 2Ttop ’ 100K). For such a

deep cycle, the Gibbs penalty would account for about

one-third of the maximum work. The relative contri-

bution of the Gibbs penalty decreases with the depth

convection, and it is similar to the maximum work for

Tsfc 2Ttop ’ 33K. This would correspond to tropical

convection reaching slightly above the freezing level.

The scaling in (21) explains the increase of the relative

contribution of the Gibbs penalty from cycle 1 to cycle 5

in Fig. 5. As the relative contribution of the water lifting

is relatively constant, as implied by the scaling in (17),

the relative increase in DG/Wmax must be compensated

by a decrease of the contribution from the buoyancy

flux Wb/Wmax. As convection becomes deeper, the im-

pact of the Gibbs penalty is reduced, and convection

can generate more kinetic energy per unit mass of air

transported.

For shallow convection, the scaling implies that the

Gibbs penalty should be on the same order of magnitude

as the maximum work. Pauluis (2011) shows that, in an

unsaturated cycle, the Gibbs penalty accounts for ap-

proximately 5/6 of the maximum work, which matches

the behavior of the shallow cycles 10–20. Finally, it should

be stressed that the scaling in (4) assumes that the dif-

ference of entropy between ascending and descending

parcels is mostly due to the difference inmixing ratio [see

(15)]. If this is not the case, the arguments above break

down. In our simulations of oceanic convection, the Bowen

ratio (i.e., the ratio of the sensible heat flux to the latent

heat flux) is small, and this assumption is well justified.

However, as discussed in Pauluis (2011), an increase in the

Bowen ratio would lead to an increase in the mechanical

efficiency of the heat engine.

5. Impacts of temperature increase on
thermodynamic cycles

Radiative–convective equilibrium is simulated a sec-

ond time after increasing the CO2 concentration from

380 to 760ppm, while keeping everything else unchanged.

The SST equilibrates to about 304.3K, and both tem-

perature and humidity increase throughout the tropo-

sphere. The climate sensitivity here is highwhen compared

to global climate models, with a temperature increase of

about 3.8K for a doubling of CO2 here. Several aspects of

the simulations might contribute to such high climate

sensitivity: the use of a ‘‘tropical only’’ domain can over-

estimate the water vapor and cloud feedbacks; the reso-

lution is insufficient to properly capture the dynamics of

shallow convection, so the low-cloud feedback is likely

inadequate; and the ocean cooling of 100Wm22 does not

account for possible changes in the global circulation. The

purpose of this experiment here is not to be an accurate

representation of atmospheric response to aCO2doubling,

but rather to illustrate how MAFALDA can be used to

diagnose a change in the thermodynamic behavior of

convection.

The isentropic mass flux and streamfunction for the

23CO2 experiment are shown in Fig. 6 and can be di-

rectly compared to the reference case in Fig. 2. The

warming is evident through the shift of the circulation

toward higher values of ue. The increase in ue of about

15K is much larger than the temperature increase and

reflects the large increase in water vapor content. Con-

vection also deepens slightly, reaching 12km in the

23CO2 case instead of 10.5 km in the control run. The

streamfunction broadens in the sense that the differ-

ence in equivalent potential temperature between as-

cending and descending air increases. If one assumes

FIG. 6. As in Fig. 2, but for the 23CO2 case.
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that the relative humidity of the descending air remains

unchanged in the 23CO2 experiment, the difference of

water content between updrafts and downdrafts in-

creases with temperature following the Clausius–

Clapeyron relationship, which is captured here by a

broadening of the isentropic streamfunction. Finally,

there is a slight reduction in the overall mass transport,

with the absolute minimum of the streamfunction de-

creasing from 0.028 to 0.026 kgm22 s21.

The MAFALDA trajectories for the 23CO2 experi-

ment are shown in Fig. 7. In T–s coordinates (Fig. 7a),

heating at Earth’s surface corresponds to the proportion

of the cycle characterized by entropy increase at almost

constant temperature. The warming is clearly evident

through shift of the warming toward higher tempera-

tures. It is also visible in the shift of all cycles toward

higher entropy values. The entropy difference between

rising and subsiding air also increases, a reflection of the

similar increase in the difference in ue. The trajectories

in b–z coordinates show mostly the deepening of convec-

tion. Updrafts exhibit a slight increase in their buoyancy.

In both rT–gy and rT–z coordinates, the moistening of the

atmosphere is evident, with the water content in ascending

air increasing from about 16 to 20gkg21.

The thermodynamic integrals in the 23CO2 experi-

ment are shown in Fig. 8. The maximum work Wmax

increases for all cycles. For the deepest cycle, the max-

imum work increases from 1570 to 2020 J kg21. This

large increase is due primarily to the larger entropy

transport by the cycle and, to a lesser extent, to the

deepening of convection. The increase in Wmax also

translates into systematic increases for all three terms

on the right-hand side of (12). As temperature increases,

the increase in water content also leads to an increase in

the energy that can be transported per unit of mass of

air. The work performed per unit mass of air increases

significantly, and individual convective events become

more intense.

The relative contributions of the buoyancy flux Wb,

water loadingWp, andGibbs penaltyDg are only slightly
affected by the warming. The Gibbs penalty remains the

dominant term for all cycles, followed by the water

FIG. 7. As in Fig. 4, but for the 23CO2 case. (a) The dashed red lines correspond to the MAFALDA from the standard case.
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loading and the buoyancy flux. A closer look indicates

that the relative contribution of the water loading in-

creases slightly. The scaling in (17) indicates that the

relative contribution of Wp is proportional to the tem-

perature scale heightHT 52(›z lnT)
21. In an atmosphere

in radiative–convective equilibrium, the temperature scale

height is close to that of moist adiabatic ascent and in-

creases substantially with temperature. Form a physical

point of view, a warmer andmoister atmosphere exhibits a

smaller lapse rate, which implies that condensation within

updrafts occurs on average at a higher level, and thusmore

work is done to lift water.

The total work done by the atmosphere is obtained by

summing the contributions from all cycles [see (14)].

The results for the 23CO2 experiment are shown in

Table 1. The maximumwork for the 23CO2 experiment

is Wmax 5 9:9Wm22. Generation of kinetic energy ac-

counts for Wb 5 1:7Wm22, the lifting of water for

Wb 5 3:2Wm22, and the Gibbs penalty for about

Dg5 5:3Wm22. The increase in maximum work is

about 20%, which is less than the 30% increase observed

in the maximum work per unit mass of air. The differ-

ence is due to a 10% reduction in the convective mass

transport in the 23CO2 experiment when compared to

the reference simulations. While individual convective

events are more intense in a warmer atmosphere, they

are also less frequent, as indicated by the reduction of

the convective mass transport.

Figure 9 shows that, in the 23CO2 experiment, the

energy transport per unit mass increases by about 25%,

while the mass transport decreases by about 10% when

compared to the reference simulation. As a result, the

upward energy transport increases by about 15%. Our

results differ from the analysis of Held and Soden

(2006), who argue that, in a warming atmosphere, radi-

ative constraints prevent the upward energy transport

from increasing significantly and that, as a result, the

overall convective mass transport should be reduced in a

warming atmosphere. They speculate that the convec-

tive mass transport should be reduced by about 5% per

1K of warming. In contrast, the convective overturning

in our simulations weakens only by 2.5% per 1K of

warming, in large part because there is a substantial in-

crease in the upward energy transport. Held and Soden

(2006) note a similar discrepancy between global cli-

mate models and one-dimensional radiative–convective

equilibrium, but the cause of this discrepancy is unclear.

Had the mass transport decreased by 20%, consistent

FIG. 8. Mechanical work performed by the MAFALDA trajec-

tories in the 23CO2 experiment. (a) Maximum work Wmax (ma-

genta line), kinetic energy production Wb (black line), increase in

water geopotential energy Wp (blue line), and Gibbs penalty Dg
(red line) for the 23CO2 (solid lines) and standard (dashed lines)

cases. (b) Normalized contribution of kinetic energy production

Wb/Wmax (black line), increase in water geopotential energy

Wp/Wmax (blue line), and Gibbs penalty Dg/Wmax (red line) for the

23CO2 case.

FIG. 9. Ratio of the convective mass transport (red line) and heat

transport (black line) between the 23CO2 and the reference

simulation.
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with Held and Soden (2006), we would expect the

maximum work to increase by about 10% rather than

the 20% increase reported in Table 1.

6. MAFALDA cycles versus Lagrangian
trajectories

Ideally, one would rather perform the thermodynamic

analysis on the actual trajectories of air parcels. How-

ever, we have to confront the fact that there are an

infinite number of parcel trajectories, that they are all

distinct, and that these trajectories are not periodic (i.e.,

they cannot be described as a thermodynamic cycle). A

practical alternative, which is the basis for MAFALDA,

is to study instead some idealized trajectories that are

representative of the flow. In doing so, we have made

two fundamental approximations. First, the mean flow is

interpreted as parcel trajectories. Second, the thermo-

dynamic properties along these trajectories are given by

their conditionally averaged value. While both of these

approximations should be regarded as ad hoc solutions,

we offer here some basis for their use in MAFALDA

and discuss the inherent uncertainties they create.

It should first be recognized that ‘‘mean flow’’ is not as

simple a concept as it may seem, Indeed, it has been long

known in atmospheric and oceanic sciences that the

mean flow depends critically on choice of the coordinate

system in which the averaging is done. Differences be-

tween the meridional circulation in Eulerian and isen-

tropic coordinates (Held and Schneider 1999; Pauluis

et al. 2008, 2010) or the disappearance of theDeacon cell

when the oceanic circulation is averaged on isopycnal

surfaces (Karoly et al. 1997; McDougall and McIntosh

2001) are well-known examples of how the coordinate

system in which the flow is averaged affects the mean

circulation.

Asmoist convection is highly turbulent, themean flow

depends strongly on the coordinate system used for av-

eraging. For example, in the simulations discussed

above, the Eulerian mean circulation [i.e., the flow av-

eraged in (x, y, z) coordinates] vanishes. Trajectories

based on the Eulerian mean flow would not provide any

useful information. This problem is circumvented in

MAFALDA by averaging the flow in z–ue coordinates,

which takes advantage of the fact that the equivalent

potential temperature is an adiabatic invariant and thus

conserved for reversible adiabatic ascent. Pauluis and

Mrowiec (2013) show that the isentropic averaging in-

deed distinguishes between rising air parcels in high-ue
updrafts and subsiding air with lower equivalent po-

tential temperature. Furthermore, Pauluis and Mrowiec

(2013) also find that the bulk of the ascent occurs in the

region of the z–ue space, where the flow ismostly upward

[see Fig. 2c in Pauluis and Mrowiec (2013)]. In other

words, equivalent potential temperature is a very good

choice to distinguish between rising and descending

parcels.2 These results give us some confidence that the

mean flow in MAFALDA does capture some key as-

pects of the parcel trajectories.

While the isentropic analysis does a good job at sep-

arating ascending and subsiding air parcels in the

boundary layer and free troposphere, it is less accurate

near the tropopause. As pointed out in Pauluis and

Mrowiec (2013), convective overshoot near the tropo-

pause corresponds to positive values of the stream-

function, which is visible between 12 and 14 km in Fig. 2.

Unfortunately, this means that the streamfunction goes

from negative through most of the troposphere to

slightly positive near the tropopause. This makes it dif-

ficult to associate parcel trajectories with a unique value

of the streamfunction near the tropopause. This could

potentially be improved in future work by using a dif-

ferent thermodynamic coordinate, such as total water

content, to better capture the overturning near the

tropopause.

A second key approximation lies in the use of condi-

tional averaging to estimate the thermodynamic state

variables inMAFALDA. This assumes that an arbitrary

thermodynamic variable, such as entropy or tempera-

ture, can be expressed as a function of height and

equivalent potential temperature alone. This can be

partially justified by Dalton’s law, which states that,

under thermodynamic equilibrium, all properties of

moist air can be inferred from three state variables. The

pressure of an air parcel can be approximated by the

horizontal-mean hydrostatic pressure p(z).3 If, in addi-

tion to the height and ue, one were to know the total

water content, then any thermodynamic property would

be uniquely determined. For example, one can write the

entropy of a parcel as

s5 s[u
e
, p(z), q

T
].

Instead, MAFALDA uses the conditionally averaged

entropy ~s(ue, z) (i.e., the average entropy of all air

parcels at a given value of the height and ue but varying

total water content). The parcels within this subset do

not have the same entropy. Variations of entropy at a

fixed z and ue depend both on variations of total water

2Of course, vertical velocity does an even better job at dis-

tinguishing between rising and descending parcels, but, in contrast

to ue, w is not an adiabatic invariant and evolves rapidly.
3 In an anelasticmodel, such as the one used in this study, Pauluis

(2008) shows that the Gibbs relationship is still valid as long as one

uses the reference state p(z) instead of the total pressure.
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content among all parcels with the same pressure and ue
and on the partial derivative of entropy with respect to

water content at fixed values of pressure and ue. To

quantify this, we compute the standard deviation of a

quantity f at a given height and equivalent potential

temperature as

s
f
(z, u

e
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr(f 2 ~f )2i

hri

s
.

Note that this standard deviation corresponds to the

variations of f among all air parcels with the same

equivalent potential temperature and at the same

height. Figure 10 shows the standard deviation for the

total water content. The fluctuations are small, less than

0.0005 kgkg21 for most of the atmosphere, but can reach

up to about 0.002 kgkg21 at high altitude and ue, which

corresponds to strong updrafts. As these air parcels are

saturated, the large value ofsrT corresponds primarily to

fluctuation in the amount of condensed water present in

the parcels. Figure 10 shows the standard deviation for

temperature and moist entropy. The largest value of the

standard deviation for temperature is about 0.5K, while

the entropy fluctuations are less than 1.5 JK21. The low

values of the standard deviation for rT , s, T, and b (not

shown) in comparison to the variations of these quan-

tities through the various MAFALDA cycles strongly

reinforces our confidence in the quantitative estimates

for thermodynamic integral Wmax, Wn, and Wp. The

standard deviation for the Gibbs free energy shows re-

gions of relatively large value, with sgv up to 10
5 J kg21 in

the upper troposphere above 8km. These are associated

with fluctuations of relative humidity in the unsaturated

environment. As the absolute amount of water vapor is

small, these fluctuations have little impact on ue but can

greatly affect the Gibbs free energy. Fortunately, air

parcels with large uncertainty in the Gibbs free energy

correspond to those with little change in water content,

and their contribution to the Gibbs penalty Dg in (12)

is small. Overall, using the conditionally averaged

thermodynamic variables to compute for the various

thermodynamic integrals in (12) yields very accurate

FIG. 10. Standard deviation at constant height and equivalent potential temperature for (a) moist entropy (J K21 kg21), (b) temperature

(K), (c) total water content (g kg21), and (d) specific Gibbs free energy of water vapor (kJ kg21).
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estimates forWmax,Wb, andWp, and slightly larger error

for the Gibbs penalty Dg.
Recently, Laliberte et al. (2015) have proposed a new

framework to diagnose thermodynamic cycles in climate

models. Their approach relies on computing the mean

circulation in a three-dimensional thermodynamic space

instead of the two-dimensional z–ue coordinates used in

MAFALDA. This method is slightly more computa-

tionally expensive than MAFALDA because it requires

the explicit computation of Lagrangian tendencies for

different thermodynamic variables at all grid points. It

offers, however, the additional advantage that all ther-

modynamic integrals can be computed exactly, without

having to approximate the state variables by their con-

ditional average. Future work should compare the ide-

alized cycles obtained under MAFALDA with both

Lagrangian trajectories and the thermodynamic re-

construction using the methodology of Laliberte et al.

(2015). Understanding the differences between these

approaches would shed some light on how turbulent

motions can affect the range of thermodynamic trans-

formations that take place in various atmospheric flows.

7. Conclusions

The paper proposes a new approach, the Mean Air-

flow as Lagrangian Dynamics Approximation, to di-

agnose the thermodynamic transformations associated

with complex atmospheric motion. To do so, one first

computes the isentropic streamfunction following the

approach of Pauluis andMrowiec (2013). The isolines of

the streamfunction correspond to the mean flow in z–ue
coordinates and are used to define a set of cyclical tra-

jectories. One can then compute the value of any ther-

modynamic variables along these main trajectories

through conditional averaging. Altogether, MAFALDA

makes it possible to extract a set of idealized trajectories

from a complex numerical simulation and to analyze the

thermodynamic transformations that are taking place

along these trajectories.

The core approximation in MAFALDA lies in inter-

preting the mean trajectories in z–ue coordinates as

parcel trajectories. As with any turbulent flow, mean

velocity can differ significantly from any individual tra-

jectory. This problem is partially alleviated inMAFALDA

by the use of an adiabatic invariant ue as a coordinate.

Pauluis and Mrowiec (2013) show that such isentropic av-

eraging can be successfully used to quantify many features

of convective motions. An important issue for further re-

search is to understand the extent to which such isentropic

averaging captures Lagrangian trajectories.

MAFALDA has been used here to reconstruct the

thermodynamic cycles associated with convection in

radiative–convective equilibrium in high-resolution sim-

ulations with SAM. The convective cycles vary between

deep convection with cloud top above 5km, shallow

convection with cloud top between 1.5 and 5km, and

convection within the sublcoud layer for convective cy-

cles that never reach saturation. Deep convection ac-

counts for about 30% of the total mass flux, shallow

convection for about 15%, and unsaturated cycles for the

remaining 55%.

Following Pauluis (2011), the maximum work that

could be performed by each individual cycle is decom-

posed into kinetic energy generation, increase in geo-

potential energy of water, and a Gibbs penalty that

accounts for the reduction of the mechanical output of

the atmospheric heat engine due to the hydrological

cycle. The maximum work that could be performed by

the MAFALDA cycles—defined as the mechanical

output of a Carnot cycle with the same entropy sources

and sinks—depends strongly on the depth of the cycle.

Unsaturated cycles act within small temperature fluc-

tuations and are associated with a very weak maximum

work, typically less than 20 J kg21. Shallow cycles exhibit

intermediary values of the maximum work reaching up

to 200 J kg21. The maximum work is significantly larger

for deeper cycles, reaching up to 1600 J kg21.

For all the cycles, the maximum work is much larger

than the actual mechanical output. This reduction of the

mechanical work is tied to the fact that water is injected

as water vapor in unsaturated air but removed through

condensation in saturated air. This implies that the

Gibbs free energy of the water is lower when it is added

to the atmosphere than when it is removed. As a result,

there is a reduction of the mechanical work produced in

the cycles that can be directly estimated in terms of a

Gibbs penalty, as discussed in Pauluis (2011). For the

shallow and unsaturated cycles, the Gibbs penalty

accounts for up to 80% of the maximum work. The

relative contribution of the Gibbs penalty is lower for

deep cycles but still accounts for about half of the

maximum work.

A large fraction of the work produced by the con-

vective cycles is used to increase the geopotential energy

of water rather than to produce kinetic energy. This

geopotential energy is then dissipated in the micro-

physical shear zone surrounding falling hydrometeors

(Pauluis et al. 2000; Pauluis and Dias 2013). In our

simulations, most of the work is used for this pur-

pose, and there is very little kinetic energy pro-

duction. Even for the deepest convective cycle,

lifting water still accounts for about half of the total

mechanical work.

The thermodynamic behavior of the individual cycles

can be aggregated together to obtain the mechanical
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energy production of the atmosphere as a whole. As the

deeper cycles are also associated with the strongest en-

ergy transport, they dominate the aggregated energy

budget. When considering the atmosphere as a whole,

the Gibbs penalty accounts for a little more than half of

the mechanical work, lifting of condensed water account

for 30%, and the generation of kinetic energy is a little

under 20% of the maximum work. These results are in

good agreement with the analysis of the entropy budget

by Pauluis and Held (2002a,b), who found that moist

processes significantly reduce the production of kinetic

energy by convection.

We also compared the thermodynamical behavior of

convection after doubling the CO2. We found that the

increase in atmospheric temperature led to an increase

of the upward energy transport per unit of mass of about

5% per 1K of temperature increase. This leads to a

similar increase in the maximum work per unit of mass

associated with the convective cycles. The partitioning

of the maximum work between kinetic energy genera-

tion, water lifting, and Gibbs penalty did not change

much, albeit there is a small increase in the relative

contribution of water loading. This increase is consistent

with a reduction of the lapse rate and an increase of the

level at which condensation occurs. Overall, our analysis

confirms that a warmer and moister world should be

associated with more intense but less frequent convec-

tive events.

The Mean Airflow as Lagrangian Dynamics Approxi-

mation and a similar approach recently introduced by

Laliberte et al. (2015) offer new methods to systematically

study the thermodynamic behavior of complex numerical

simulations of the atmosphere. Previous studies, such as

Pauluis and Held (2002a), rely on detailed diagnostics of

the thermodynamic transformation as they occur in the

model. While such approaches can be extremely in-

formative, they also require an in-depth knowledge of

many aspects of the model at hand, which makes them

difficult to reproduce across a wide array of numerical

models. In contrast, a key advantage of MAFALDA and

the thermodynamic reconstruction of Laliberte et al.

(2015) lies in that they rely solely on three-dimensional

snapshots of the flow and can be implemented while

treating the numerical model as a black box. This

opens up the possibility for systematic investigations

of the thermodynamic transformations that take place

in atmospheric flows and should help us better un-

derstand how thermodynamics and dynamics interact

with each other in the global climate system.
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APPENDIX

Gibbs Free Energy of Water in Different Phases

The specific Gibbs free energy is defined as the dif-

ference between its enthalpy and its entropy multiplied

by the temperature:

g5 h2Ts .

As the exact value of both the entropy and enthalpy of a

system depends on the choice of the reference state, so

does the Gibbs free energy. For the study of moist

convection, a convenient choice for the reference state is

liquid water at the freezing temperature Tf . In this case,

the specific enthalpies of water vapor hy, liquid water hl,

and hi are

h
y
5C

l
(T2T

f
)1L

y
, (A1a)

h
l
5C

l
(T2T

f
), and (A1b)
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(T2T
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)2L

f0
. (A1c)

Similarly, the corresponding specific entropies sy, sl, and

si are
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For this choice of the reference state, the specific Gibbs

free energy is therefore:
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In the Gibbs relationship in (7)

T ds5 dh2a
d
dp2 �

w5y,l,i
g
w
dr

w
,

moist air is treated as a mixture of 1 kg of dry air, ry kg of

water vapor, rl kg of liquid water, and ri kg of ice. The

corresponding entropy and enthalpy per unit mass of

dry air are
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s5 s
d
1 r

y
s
y
1 r

l
s
l
1 r

i
s
i

and (A4)

h5 s
d
1 r

y
h
y
1 r

l
h
l
1 r

i
h
i
. (A5)

The specific volume ad is the specific volume per unit

mass of dry air:

a
d
5

R
d
T1R

y
r
y
T

p
. (A6)
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